If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=25
We move all terms to the left:
4x^2+16x-(25)=0
a = 4; b = 16; c = -25;
Δ = b2-4ac
Δ = 162-4·4·(-25)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{41}}{2*4}=\frac{-16-4\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{41}}{2*4}=\frac{-16+4\sqrt{41}}{8} $
| 17=8k+9k | | 3x+5(-3x+8)=-56 | | 13=8+b/2 | | Z2-11z+30=0 | | 9+3x=40 | | 2/3x-1/2=1/3+5/6× | | 60=4w+8 | | -5=p/3-3 | | 5X-6(x-3)=6 | | 39.51+0.50x=120 | | 3x+6-11=2x-2 | | -2v+16=-4(v-9) | | 0=5v+3v | | 6n^2-17n=0 | | 20/7x=20 | | 6(8x-6)=5(x+7) | | 15=9g-6g | | -2t=-41-6t | | 12=6m-2m | | 6(x+7)=8x+7 | | 14=2/11y | | y/6+3=-17 | | 61-9x=19+12x | | (x-3)²=17 | | 38.95+0.25x=130 | | 43-5x=15+9x | | 2x+59=9x-4 | | 0.0169=d2 | | C(m)=30+.50m | | x+71+58=180 | | a^2=161 | | 2x-2x=-10-30 |